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Abstract 

As digital technologies become more integral to our lives, the risk of cyber-attacks and data breaches 

has grown significantly. In the realm of cyber security, the NSL-KDD dataset is a well-established 

benchmark for assessing the performance of Intrusion Detection Systems (IDS). These systems are 

crucial for identifying and responding to threats, thereby safeguarding organizational data and 

infrastructure. This research introduces an innovative approach to improving IDS performance on the 

NSL-KDD dataset through the use of meta-heuristic algorithms and machine learning techniques. By 

leveraging multiple meta-heuristic algorithms, the study aimed to optimize the hyperparameters of 

several machine learning models, including Random Forest (RF), Classification and Regression 

Trees (CART), Support Vector Machine (SVM), and Multilayer Perceptron (MLP). The 

effectiveness of the IDS was measured using key evaluation metrics such as precision, recall, F1-

score, and accuracy. The findings revealed that the proposed method achieved superior detection 

accuracy and robustness compared to existing techniques. This research underscores the value of 

meta-heuristic algorithms in enhancing IDS models and demonstrates the potential of machine 

learning-based solutions in tackling cyber security challenges. 

Key words: Cyber-Attacks, Intrusion Detection Systems, Hyperparameters, Meta-Heuristic, 

Machine Learning. 

 

1. Introduction 

The significance of cyber security in the digital age has grown due to our increasing reliance on 

advanced technology in everyday activities. As digital transformation progresses, businesses, 

governments, and individuals depend more heavily on digital systems and networks to handle 

sensitive information. This shift has led to a rise in cyber-attacks, including data breaches, 

ransomware attacks, and phishing scams, which have become more prevalent and complex, causing 

significant financial losses and reputational harm.The COVID-19 pandemic has further accelerated 

the adoption of digital technologies, exposing vulnerabilities in remote work environments and 

making cyber security even more crucial. As a result, there is an urgent need for effective cyber 

security measures and strategies to protect against cyber threats and mitigate the potential impacts of 

these attacks. 

 
Figure.1. Number of connected devices in internet [2] 
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The number of connected devices globally has surpassed 17 billion, with IoT devices making up 7 

billion of that total. This excludes smartphones, tablets, laptops, and fixed-line phones. IoT devices, 

used in consumer and enterprise/B2B applications, are a major driver of global connectivity growth. 

The number of active IoT devices is expected to reach 10 billion by 2020 and 22 billion by 2025, 

counting only active connections and not outdated devices. 

Intrusion Detection Systems (IDS) are essential for detecting and preventing cyber-attacks by 

analyzing network traffic and host activity for signs of malicious behavior. IDS come in two types: 

network-based (NIDS) and host-based (HIDS). NIDS monitor network traffic for attacks, while 

HIDS monitor activity on individual host systems. IDS can alert security personnel to detected 

attacks and some can automatically respond by blocking traffic or isolating compromised systems. 

By quickly identifying and responding to threats, IDS help organizations minimize the impact of 

cyber-attacks and protect sensitive data. 

The NSL-KDD dataset is a benchmark used to evaluate IDS performance. It is a refined version of 

the KDD Cup 1999 dataset, addressing issues like duplicate and irrelevant records and the absence of 

newer attack types. The NSL-KDD dataset includes 22 attack types, providing a more 

comprehensive and representative distribution. It contains around 4 million network connections 

categorized into four classes: normal, probe, DoS (denial of service), and U2R (user-to-root). Each 

connection is described by 41 features, such as protocol type, service, source and destination 

addresses, and flags. The dataset also includes class labels indicating whether a connection is normal 

or an attack, specifying the attack type if applicable. 

The NSL-KDD dataset is crucial for evaluating IDS algorithms, offering a standardized benchmark 

for assessing their accuracy and effectiveness before real-world deployment. It has been widely used 

for developing and testing new IDS algorithms, providing a foundation for further network security 

research. 

Meta-heuristic and machine learning (ML) algorithms are used to develop IDS and enhance network 

security. Meta-heuristic algorithms search for near-optimal solutions by exploring the search space, 

used for feature selection and parameter tuning in IDS. Machine learning algorithms learn from data 

to detect anomalies and classify network traffic as normal or malicious, enabling models to identify 

various attack types. Combining meta-heuristic and machine learning techniques significantly 

improves IDS accuracy and efficiency. Evaluating different algorithms helps researchers identify the 

most effective methods for improving network security. 

 

2. Literature Review 

Numerous research studies have focused on improving the performance of Intrusion Detection 

Systems (IDS) by employing various methods, including meta-heuristic and machine learning (ML) 

algorithms. 

2.1 Data processing for IDSs 

Recent studies have demonstrated that combining Min-Max normalization with one-hot encoding 

can enhance the performance of machine learning algorithms for intrusion detection on the NSL-

KDD dataset. Yang et al. (2021) proposed a hybrid feature selection method that incorporated both 

techniques, achieving superior results compared to other methods. Similarly, Garg et al. (2020) 

found that Min-Max normalization outperformed other normalization techniques. Hu et al. (2021) 

also utilized Min-Max normalization and one-hot encoding in a deep neural network-based IDS. 

Collectively, these studies indicate that this combination of techniques can significantly improve IDS 

performance on the NSL-KDD dataset. 

2.2 Machine leaning methods for IDSs 

Several studies have explored various methods for enhancing Intrusion Detection Systems (IDS), 

including ensemble models, deep learning techniques, and hybrid approaches. Alazab and 

Venkatraman (2021) proposed an ensemble model that combines six machine learning algorithms, 

demonstrating its effectiveness on the UNSW-NB15 dataset. Chen et al. (2021) introduced a deep 

learning architecture called Neural Tree Network (NTN) for IDS, which showed superior 

performance on the CIC-IDS2017 dataset. Huang et al. (2021) presented a hybrid approach 

combining a ResNet-based deep neural network with the SVM algorithm, while Ahmad et al. (2020) 

developed an IDS that utilizes a deep convolutional neural network (CNN) for feature extraction and 

the SVM algorithm for classification. Additionally, Zeng et al. (2020) proposed a feature selection 
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method using mutual information and the grey wolf optimizer (GWO) algorithm, demonstrating its 

effectiveness on the NSL-KDD dataset. These studies suggest that various approaches can improve 

IDS performance, and their effectiveness can be evaluated using different benchmark datasets. 

2.3  Meta-heuristic based Machine leaning methods for IDSs  

Combining Support Vector Machine (SVM) with meta-heuristic algorithms like Firefly Algorithm 

and Artificial Bee Colony Algorithm has shown promise in enhancing the performance of Intrusion 

Detection Systems (IDS) on the NSL-KDD dataset, as evidenced by Aber et al. (2020) and 

Shalaginov et al. (2018). These hybrid approaches have demonstrated superiority over standalone 

SVM and other existing methods in terms of accuracy, precision, recall, and F1-score [13]. 

While SVM has been identified as performing better than other machine learning algorithms on the 

NSL-KDD dataset by Zaki et al. (2018), its performance can vary based on factors such as dataset 

quality, size, and hyperparameter selection. Therefore, it is advisable to assess different algorithms 

and hyperparameters across diverse datasets [14]. 

Kumar and Singh proposed two hybrid approaches that integrate Particle Swarm Optimization (PSO) 

with SVM, as well as Genetic Algorithm (GA) with SVM, for IDS on the NSL-KDD dataset. Both 

approaches demonstrated superior performance compared to standalone SVM and other existing 

methods [15]. 

In conclusion, leveraging meta-heuristic algorithms alongside machine learning techniques has the 

potential to enhance IDS performance across various datasets. Future research could explore the 

effectiveness of different meta-heuristic algorithms and their combinations with machine learning 

approaches in further detail. 

2.4 Research gap and solution 

Current machine learning-based IDS systems face several challenges including interpretability 

issues, limited ability to detect new or unknown attacks, resource-intensive operations, sensitivity to 

data quality and quantity, susceptibility to adversarial attacks, and difficulties in feature selection. 

Overcoming these challenges will require ongoing research and development aimed at creating more 

interpretable, robust, and resource-efficient machine learning models. Enhancements should focus on 

improving the systems' capacity to handle emerging threats, reducing vulnerability to adversarial 

manipulations, and refining feature selection processes. Furthermore, improving the quality and 

quantity of training data is essential for advancing the effectiveness of machine learning-based IDS. 

 

3. Methodology 

The study utilizes the NSL-KDD dataset and introduces a methodology comprising three key steps: 

pre-processing, feature extraction, and classification. Pre-processing is essential as it involves 

formatting initial data and normalizing values to optimize the performance of machine learning 

models. Feature extraction plays a critical role in eliminating irrelevant features that could otherwise 

diminish model accuracy and prolong training duration. The training phase involves fine-tuning 

parameters to improve model accuracy, thereby enhancing overall performance. The proposed model 

structure is illustrated in the figure below. 

 
Figure.2. Developing a Meta-Heuristic based ML model: A step-by-step process 

The proposed approach involves leveraging Meta-Heuristic Algorithms to optimize the 

hyperparameters of machine learning models for Intrusion Detection Systems (IDS). Meta-Heuristic 

Algorithms, inspired by natural phenomena, are capable of searching for optimal hyperparameters 

critical for enhancing model performance. Integrating Meta-Heuristic Algorithms with machine 
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learning models aims to improve accuracy, minimize false positives and negatives, and enhance 

anomaly detection capabilities. This approach offers efficiencies in exploring large hyperparameter 

spaces effectively, reducing manual effort. Overall, the proposed methodology holds promise for 

significantly enhancing IDS accuracy while mitigating false alarms. 

3.1 NSL-KDD database description 

The NSL-KDD dataset is a widely utilized benchmark in intrusion detection systems, derived from 

the KDD99 dataset. It addresses shortcomings of the KDD99 dataset, such as redundancy and 

duplicate records that could skew classifier outcomes. This freely available dataset is provided by the 

Canadian Institute of Cybersecurity and includes both KDDTrain+ and KDDTest+ sets. Notably, 

KDDTest+ incorporates seventeen additional attack types absent in KDDTrain+, necessitating the 

exclusion of instances associated with these categories for fair classification. For further details 

regarding the features of KDDTrain+ and KDDTest+ sets, refer to Table 1. 

Table.1. Feature details of NSL-KDD dataset 

 
3.2Data Preprocessing 

The min-max normalization method employed in the NSL-KDD dataset involves adjusting each 

numerical feature x by subtracting its minimum value and then dividing by the range (difference 

between maximum and minimum values) of that feature. This process scales each feature to a range 

between 0 and 1, ensuring uniformity across the dataset. The formula for calculating the normalized 

value x_scaled is: 

x_scaled = (x - min(x)) / (max(x) - min(x)). 

It's crucial to apply this formula separately to each numerical feature in the dataset, utilizing the 

minimum and maximum values specific to each feature from the training dataset. This practice 

prevents the normalization process from being influenced by any information in the test dataset, 

thereby avoiding potential bias in the results [16]. 

3.3 One-hot-encoding 

To perform one-hot encoding on a categorical feature with n unique values in the NSL-KDD dataset, 

we create n new binary columns, one for each unique value. The value of each binary column is 1 if 

the original feature value matches the corresponding unique value, and 0 otherwise. 

For example, if we have a categorical feature "protocol_type" with three unique values: TCP, UDP, 

and ICMP, we would create three new binary columns: "protocol_type_TCP", 

"protocol_type_UDP", and "protocol_type_ICMP". To one-hot encode "protocol_type", we use the 

following mathematical equation: 

• protocol_type_TCP = 1 if protocol_type = "TCP", 0 otherwise 

• protocol_type_UDP = 1 if protocol_type = "UDP", 0 otherwise 

• protocol_type_ICMP = 1 if protocol_type = "ICMP", 0 otherwise 

Note that one-hot encoding can increase the dimensionality of the dataset and potentially slow down 

machine learning algorithms. Therefore, it's important to consider which categorical features to one-

hot encode and which ones to leave as is [17]. 

3.4 Feature extraction 

The processing module utilized in this approach extracts the most highly correlated features from the 

dataset. To accomplish this, the percentage of zeros is evaluated for each continuous feature in both 

the KDDTrain+ and KDDTest+ sets. The distribution of null values for each numeric variable in the 

KDDTrain+ set is depicted in Figure 2. 
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Figure.3. Graph of null values included in the 38 numeric variables of the KDDTrain+ set 

In the study, feature vectors containing more than 80% zeros were omitted. Specifically, 20 variables 

were identified and excluded (highlighted in red in Figure 3). The remaining dataset included 18 

continuous features, supplemented by 84 one-hot-encoded vectors, resulting in a final feature vector 

dimensionality of 102. This enhanced feature vector served as the input for the machine learning 

methods employed in the research. 

3.5 Classification  

Supervised machine learning algorithms have been widely utilized to evaluate the effectiveness of 

intrusion detection on the NSL-KDD dataset. The dataset comprises multiple features that signify 

network traffic and attacks. The objective is to classify the traffic into either normal or malicious 

categories. Several supervised ML algorithms such as RF, SVM, CART, and MLP have been applied 

to the NSL-KDD dataset.  

i. CART: 

The CART algorithm is utilized in building decision trees for classification tasks, including in IDS 

for categorizing network traffic as benign or malicious. The process involves several steps: 

1. Begin with a labeled dataset of network traffic samples. 

2. Calculate information gain or Gini impurity for each feature. 

3. Select the feature with the highest gain or lowest impurity. 

4. Split the dataset into two subsets based on the selected feature. 

5. Recursively apply steps 2-4 to each subset until a stopping criterion is met. 

6. Assign class labels to each leaf node based on the majority class in that node's subset. 

7. The resulting decision tree can classify new network traffic samples by evaluating their 

features. 

The CART algorithm generates a decision tree structure that can be represented as a series of if-then 

rules or binary splits on input features. The effectiveness of the model hinges on factors such as data 

quality and hyperparameter settings, such as maximum tree depth and minimum samples required to 

split a node [18]. 

ii. RF: 

To implement the Random Forest (RF) method for IDS classification using the NSL-KDD dataset, 

the following steps are typically followed: 

1. Randomly select a subset of samples and input features from the dataset. 

2. Build a decision tree using the selected subset. 

3. Repeat steps 1-2 to construct a forest of decision trees. 

4. To classify a new network traffic sample, apply each tree in the forest to the sample and tally 

the number of trees that classify it as malicious or benign. 

5. Assign the class label based on the majority vote (common vote) of the trees in the forest. 
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The RF algorithm produces a collection of decision trees that collectively classify new network 

traffic samples based on their features. The performance of the model is influenced by factors such 

as the number of trees in the forest, the quality of the data, and hyperparameters including maximum 

tree depth and feature subset size [19]. 

iii. SVM: 

To construct an SVM system for IDS classification using the NSL-KDD dataset, the following steps 

are typically followed: 

1. Preprocess the data by standardizing the features to have zero mean and unit variance. 

2. Select an appropriate kernel function to map the data into a higher-dimensional feature space, 

if necessary. 

3. Solve the optimization problem to find the hyperplane that maximizes the margin between 

support vectors of each class. 

4. Classify new network traffic samples by mapping them into the same feature space as the 

training data and determining their position relative to the learned hyperplane. 

 

The output of the SVM algorithm is a decision boundary that effectively separates different classes 

of network traffic samples. The performance of the SVM model is influenced by the selection of the 

kernel function and key hyperparameters such as the regularization parameter and kernel bandwidth 

[20]. 

iv.  MLP: 

To construct an MLP model for IDS classification using the NSL-KDD dataset, follow these steps: 

1. Preprocess the input data by standardizing it to have zero mean and unit variance. 

2. Define the structure of the MLP network, specifying the number of layers, neurons in each 

layer, and activation functions for each neuron. 

3. Train the network using an optimization algorithm such as stochastic gradient descent to 

minimize the error between predicted and actual class labels. 

4. Evaluate the performance of the trained network on a separate validation set to assess its 

accuracy. 

5. Fine-tune hyperparameters, including the learning rate and regularization strength, to enhance 

the model's performance on the validation set. 

The output of the MLP algorithm is a model capable of classifying new network traffic samples as 

either malicious or benign based on their features. The effectiveness of the MLP model relies on the 

chosen architecture, optimal hyperparameters, and the size and quality of the input data [21]. 

3.6 Hyper-Parameter Tuning (HT) 

Machine learning parameters are settings learned during training that significantly influence model 

performance. These parameters encompass a wide range of values and configurations tailored to 

specific problems. Examples include learning rate, regularization parameters, number of hidden 

layers, activation functions, number of trees (in ensemble methods), kernel functions (for SVMs), 

and number of clusters (in clustering algorithms). 

The selection of these parameters is crucial and typically determined through iterative testing or 

automated techniques such as grid search or Bayesian optimization. Each machine learning 

technique has its own distinct set of parameters that play a critical role in optimizing model 

performance for various tasks and datasets. 

Table.2. Parameters for Applied ML techniques 

Algorithms Parameters 

CART  

[18] 

The maximum depth of the tree, the minimum number of samples needed to 

split a node, and the criterion used for splitting nodes 

RF 

[19] 

Number of trees, max tree depth, min samples to split a node, split criterion, 

and number of features for best split. 

SVM 

[20] 

Choice of kernel function, Kernel bandwidth 

MLP 

[21] 

Number of neurons per hidden layer, activation function for each neuron, and 

learning rate 



179                                                      Vol.19, No.02(IV), July-December :  2024 

HT is the process of finding the best hyperparameters for a ML algorithms. These are set by the 

practitioner and include values such as learning rate, regularization parameter, number of hidden 

layers, and activation function. Different methods can be used for hyperparameter tuning [22]: 

•        Grid Search (GS): This involves specifying a grid of possible hyperparameter values and 

testing every combination of hyperparameters to find the best set of values. 

• Gradient-Based Optimization (GBO): This algorithm involves using gradient descent to 

optimize the hyperparameters. This method can be computationally expensive since it requires 

calculating gradients with respect to the hyperparameters, but it can be useful for small search spaces 

and differentiable objective functions [23]. 

• Simulated Annealing (SA): This algorithm is inspired by metallurgy's annealing process, 

which gradually cools a material to minimize defects. In the context of hyperparameter tuning, SA 

randomly selects a new set of hyperparameters and accepts the new solution with some probability 

based on a temperature parameter, which is gradually decreased over time to converge towards the 

optimal solution [24]. 

• Genetic Algorithms (GA): This method uses a population of hyperparameters and evolves 

the population using evolutionary principles, such as mutation and selection, to find the best set of 

hyperparameters. 

Hyperparameter tuning should always be performed on a separate validation set to avoid overfitting 

to the training data. 

i. Proposed algorithm steps 

Utilizing a metaheuristic algorithm for hyperparameter tuning in machine learning follows these 

steps: 

• Step1: Define the search space: Let S be the search space, where each element s represents a 

candidate solution consisting of a set of hyperparameters to be optimized. 

• Step2: Initialize the population: Let P be the population of candidate solutions, where each 

element p_i represents a solution in the search space. The population is initialized by randomly 

generating or selecting initial solutions from the search space. 

• Step3: Evaluate the fitness: Let f(p_i) be the fitness function that evaluates the performance 

of each candidate solution p_i using a metric such as accuracy, AUC, or F1 score. 

• Step4: Update the population: Apply the metaheuristic algorithm to generate new candidate 

solutions based on the current population and fitness values. Let P' be the new population, where 

each element p'_i is generated by applying variation operators such as mutation and crossover to the 

current population P. 

• Step5: Evaluate the fitness of the new solutions: Evaluate the fitness of the new candidate 

solutions using the fitness function f(p'_i), and compare them to the previous best solutions to 

determine if there has been an improvement in performance. 

• Step6: Repeat steps 4-5: Iterate the algorithm until some stopping criterion is met, such as a 

maximum number of iterations or convergence of the fitness values. 

• Step7: Select the best hyperparameters: Once the algorithm has completed, select the 

hyperparameters that correspond to the best performing solution based on the fitness function. 

These optimized hyperparameters are subsequently used to train the final machine learning model on 

the entire training dataset and evaluated on a separate test dataset to estimate its generalization 

performance. 

 

6. Result and Discussion 

The objective of this research is to optimize hyperparameters for Machine Learning (ML) algorithms 

to achieve optimal performance in Network Intrusion Detection using the NSL-KDD dataset. The 

study will be conducted on a custom-built computer running Windows 11, equipped with an Intel 

Core i5 CPU, 8GB RAM, and a 256GB SSD. Python will serve as the primary programming 

language, utilizing libraries such as Scikit-learn, Pandas, NumPy, Matplotlib, and Pickle, along with 

the Keras framework for data analysis, modeling, experimentation, and performance evaluation. The 

development and testing of models will be carried out using Jupyter Notebook. 

Performance Metrics and Evaluation: The research employs ML methodologies to enhance the 

accuracy of network data classification. The datasets were partitioned as shown in the table below. 
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The NSL-KDD dataset, which includes a subset of selected records, facilitates efficient model 

evaluation. This dataset encompasses various types of attacks, summarized in the table along with 

their respective attack types [24]: 

Table.3. Type of attacks  

S.No Attack Type Attack 

1 Denial of 

Service (DoS) 

back, land, teardrop, neptune, pod, smurf 

 

2 Remote to Local 

(R2L) 

buffer_overflow, ftp_write, guess_passwd, imap, loadmodule, multihop, 

perl, phf, rootkit, spy, warezclient, warezmaster 

3 Probe ipsweep, nmap, portsweep, satan 

4 User to Root 

(U2R)  

 

buffer_overflow, httptuneel, rootkit,loadmodule, perl, xterm, ps, 

SQLattack 

The proposed architecture was trained and tested using a dataset comprising 125,972 items in the 

training set and 22,544 items in the test set. This dataset is composed of 41 features categorized into 

four groups. The initial three features include protocol type, service, and flag [25]. 

Table.4. testing and training .of data sets 

S.No NSL-KDD 

Dataset 

Total data Normal DoS R2L U2R Probe  

01 Training set 125,937 67,343 45,927 995 52 11,656  

02 Testing set 22,544 9711 7458  2754  200 2421  

The proposed architecture was tested on a dataset, and metrics were utilized to evaluate its 

performance. The table below displays the mathematical expressions for the applied metrics. 

Table.5. Mathematical Equations for the Computation of Performance Measures 

S.No Metrics Expression 

01 Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

02 Recall TP

TP+FN
 x100 

03 Precision 𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 

 

04 F1-Score 
2.

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

TP is True Positive Values, TN is True Negative Values, FP is False Positive and FN is False 

Negative values [26]. 

 

Results and Findings: Here, the improvement of the proposed design as well as the impact of 

various existing models will be discussed. The effectiveness of various ML architectures is compared 

in the tables that follow.  

Table.5. Performance analysis of ML algorithms 

ML Algorithms Accuracy Precision 

Recall 

 F1-Score 

CART 85 87 81 84 

RF 90 91 87 89 

SVM 91 92 87 90 

MLP 93 93 91 92 

The table compares the performance of four machine learning algorithms: CART, RF, SVM, and 

MLP. CART has the lowest scores with 85% accuracy and an F1-Score of 84%. RF performs better 

with 90% accuracy and an 89% F1-Score. SVM slightly surpasses RF with 91% accuracy and a 90% 
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F1-Score. MLP leads with the highest performance, achieving 93% accuracy, 93% precision, 91% 

recall, and a 92% F1-Score, making it the best among the algorithms evaluated. 

 
Figure.4. Performance Comparison of ML Algorithms 

 

              Table.6. Performance analysis of Optimized ML algorithms of Accuracy 

 GS GBO SA GA 

Accuracy (%) 

CART 86 86 87 89 

RF 91 92 92 93 

SVM 92 92 93 94 

MLP 93 93 94 96 

 

 
The table compares accuracy (%) of CART (86-89%), RF (91-93%), SVM (92-94%), and MLP (93-

96%) using GS, GBO, SA, and GA. Results highlight MLP's highest accuracy with GA (96%), while 

RF consistently performs well across methods, and CART and SVM show incremental 

improvements with advanced optimization techniques. 

                 Table.7. Performance analysis of Optimized ML algorithms of Precision 

 GS GBO SA GA 

Precision (%) 

CART 88 88 89 91 

RF 93 94 94 95 

SVM 94 94 95 96 

MLP 95 95 96 97 
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Table 7 compares precision (%) of CART (88-91%), RF (93-95%), SVM (94-96%), and MLP (95-

97%) using GS, GBO, SA, and GA. Results demonstrate MLP's highest precision with GA (97%), 

while RF and SVM also show strong performance across methods, and CART exhibits incremental 

improvements with advanced optimization techniques. 

Table.8. Performance analysis of Optimized ML algorithms of Recall 

 GS GBO SA GA 

Recall (%) 

CART 82 82 83 85 

RF 87 88 88 89 

SVM 88 88 89 90 

MLP 89 89 90 92 

 

 
Table 8 compares recall (%) of CART (82-85%), RF (87-89%), SVM (88-90%), and MLP (89-92%) 

using GS, GBO, SA, and GA. MLP consistently achieves the highest recall, with GA providing the 

highest scores across all algorithms, indicating effective optimization for enhancing recall 

performance. 

Table.9. Performance analysis of Optimized ML algorithms of F1-Score 

 GS GBO SA GA 

F1-Score (%) 

CART 85 86 87 89 

RF 90 92 92 93 

SVM 91 92 93 94 

MLP 92 93 94 96 
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Table 9 compares F1-score (%) of CART (85-89%), RF (90-93%), SVM (91-94%), and MLP (92-

96%) using GS, GBO, SA, and GA. MLP consistently achieves the highest F1-scores, with GA 

yielding the highest scores across all algorithms, demonstrating effective optimization for enhancing 

classification performance. 

 

7. Conclusion 

In today's digital landscape, intrusion detection systems (IDS) are vital for protecting computer 

networks against a variety of cyber-attacks. This study focused on evaluating IDS performance using 

meta-heuristic and ML algorithms with the NSL-KDD dataset. The results highlighted that 

combining these algorithms yielded superior outcomes in accuracy, precision, recall, and F1-score 

compared to using them individually. Specifically, the MLP classifier optimized with Genetic 

Algorithm (GA) achieved the highest accuracy of 96%. 

Future research can enhance intrusion detection systems by developing datasets that accurately 

reflect current cyber-attack trends. Additionally, exploring the integration of ML and DL algorithms 

could further improve IDS effectiveness. Evaluating the proposed 

algorithm's performance across different datasets will be essential to validate its robustness and 

applicability in diverse network security scenarios. 
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