
Fuzzy Systems and Soft Computing

ISSN : 1819-4362
ENHANCING PERFORMANCE OF INTRUSION DETECTION SYSTEM IN THE NSL-

KDD DATASET USING META-HEURISTIC AND MACHINE LEARNING ALGORITHMS

K. Dinesh Research Scholar, Department of Computer science, Dr.SNS Rajalakshmi College of arts

and science, Coimbatore-49. dineshcsc1990@gmail.com

D. Kalaivani Associate Professor& Head Department of Computer Technology, Dr.SNS

Rajalakshmi College of Arts and Science, Coimbatore-49.

Abstract

As digital technologies become more integral to our lives, the risk of cyber-attacks and data breaches

has grown significantly. In the realm of cyber security, the NSL-KDD dataset is a well-established

benchmark for assessing the performance of Intrusion Detection Systems (IDS). These systems are

crucial for identifying and responding to threats, thereby safeguarding organizational data and

infrastructure. This research introduces an innovative approach to improving IDS performance on the

NSL-KDD dataset through the use of meta-heuristic algorithms and machine learning techniques. By

leveraging multiple meta-heuristic algorithms, the study aimed to optimize the hyperparameters of

several machine learning models, including Random Forest (RF), Classification and Regression

Trees (CART), Support Vector Machine (SVM), and Multilayer Perceptron (MLP). The

effectiveness of the IDS was measured using key evaluation metrics such as precision, recall, F1-

score, and accuracy. The findings revealed that the proposed method achieved superior detection

accuracy and robustness compared to existing techniques. This research underscores the value of

meta-heuristic algorithms in enhancing IDS models and demonstrates the potential of machine

learning-based solutions in tackling cyber security challenges.

Key words: Cyber-Attacks, Intrusion Detection Systems, Hyperparameters, Meta-Heuristic,

Machine Learning.

1. Introduction

The significance of cyber security in the digital age has grown due to our increasing reliance on

advanced technology in everyday activities. As digital transformation progresses, businesses,

governments, and individuals depend more heavily on digital systems and networks to handle

sensitive information. This shift has led to a rise in cyber-attacks, including data breaches,

ransomware attacks, and phishing scams, which have become more prevalent and complex, causing

significant financial losses and reputational harm.The COVID-19 pandemic has further accelerated

the adoption of digital technologies, exposing vulnerabilities in remote work environments and

making cyber security even more crucial. As a result, there is an urgent need for effective cyber

security measures and strategies to protect against cyber threats and mitigate the potential impacts of

these attacks.

Figure.1. Number of connected devices in internet [2]

mailto:dineshcsc1990@gmail.com

174 Vol.19, No.02(IV), July-December : 2024

The number of connected devices globally has surpassed 17 billion, with IoT devices making up 7

billion of that total. This excludes smartphones, tablets, laptops, and fixed-line phones. IoT devices,

used in consumer and enterprise/B2B applications, are a major driver of global connectivity growth.

The number of active IoT devices is expected to reach 10 billion by 2020 and 22 billion by 2025,

counting only active connections and not outdated devices.

Intrusion Detection Systems (IDS) are essential for detecting and preventing cyber-attacks by

analyzing network traffic and host activity for signs of malicious behavior. IDS come in two types:

network-based (NIDS) and host-based (HIDS). NIDS monitor network traffic for attacks, while

HIDS monitor activity on individual host systems. IDS can alert security personnel to detected

attacks and some can automatically respond by blocking traffic or isolating compromised systems.

By quickly identifying and responding to threats, IDS help organizations minimize the impact of

cyber-attacks and protect sensitive data.

The NSL-KDD dataset is a benchmark used to evaluate IDS performance. It is a refined version of

the KDD Cup 1999 dataset, addressing issues like duplicate and irrelevant records and the absence of

newer attack types. The NSL-KDD dataset includes 22 attack types, providing a more

comprehensive and representative distribution. It contains around 4 million network connections

categorized into four classes: normal, probe, DoS (denial of service), and U2R (user-to-root). Each

connection is described by 41 features, such as protocol type, service, source and destination

addresses, and flags. The dataset also includes class labels indicating whether a connection is normal

or an attack, specifying the attack type if applicable.

The NSL-KDD dataset is crucial for evaluating IDS algorithms, offering a standardized benchmark

for assessing their accuracy and effectiveness before real-world deployment. It has been widely used

for developing and testing new IDS algorithms, providing a foundation for further network security

research.

Meta-heuristic and machine learning (ML) algorithms are used to develop IDS and enhance network

security. Meta-heuristic algorithms search for near-optimal solutions by exploring the search space,

used for feature selection and parameter tuning in IDS. Machine learning algorithms learn from data

to detect anomalies and classify network traffic as normal or malicious, enabling models to identify

various attack types. Combining meta-heuristic and machine learning techniques significantly

improves IDS accuracy and efficiency. Evaluating different algorithms helps researchers identify the

most effective methods for improving network security.

2. Literature Review

Numerous research studies have focused on improving the performance of Intrusion Detection

Systems (IDS) by employing various methods, including meta-heuristic and machine learning (ML)

algorithms.

2.1 Data processing for IDSs

Recent studies have demonstrated that combining Min-Max normalization with one-hot encoding

can enhance the performance of machine learning algorithms for intrusion detection on the NSL-

KDD dataset. Yang et al. (2021) proposed a hybrid feature selection method that incorporated both

techniques, achieving superior results compared to other methods. Similarly, Garg et al. (2020)

found that Min-Max normalization outperformed other normalization techniques. Hu et al. (2021)

also utilized Min-Max normalization and one-hot encoding in a deep neural network-based IDS.

Collectively, these studies indicate that this combination of techniques can significantly improve IDS

performance on the NSL-KDD dataset.

2.2 Machine leaning methods for IDSs

Several studies have explored various methods for enhancing Intrusion Detection Systems (IDS),

including ensemble models, deep learning techniques, and hybrid approaches. Alazab and

Venkatraman (2021) proposed an ensemble model that combines six machine learning algorithms,

demonstrating its effectiveness on the UNSW-NB15 dataset. Chen et al. (2021) introduced a deep

learning architecture called Neural Tree Network (NTN) for IDS, which showed superior

performance on the CIC-IDS2017 dataset. Huang et al. (2021) presented a hybrid approach

combining a ResNet-based deep neural network with the SVM algorithm, while Ahmad et al. (2020)

developed an IDS that utilizes a deep convolutional neural network (CNN) for feature extraction and

the SVM algorithm for classification. Additionally, Zeng et al. (2020) proposed a feature selection

175 Vol.19, No.02(IV), July-December : 2024

method using mutual information and the grey wolf optimizer (GWO) algorithm, demonstrating its

effectiveness on the NSL-KDD dataset. These studies suggest that various approaches can improve

IDS performance, and their effectiveness can be evaluated using different benchmark datasets.

2.3 Meta-heuristic based Machine leaning methods for IDSs

Combining Support Vector Machine (SVM) with meta-heuristic algorithms like Firefly Algorithm

and Artificial Bee Colony Algorithm has shown promise in enhancing the performance of Intrusion

Detection Systems (IDS) on the NSL-KDD dataset, as evidenced by Aber et al. (2020) and

Shalaginov et al. (2018). These hybrid approaches have demonstrated superiority over standalone

SVM and other existing methods in terms of accuracy, precision, recall, and F1-score [13].

While SVM has been identified as performing better than other machine learning algorithms on the

NSL-KDD dataset by Zaki et al. (2018), its performance can vary based on factors such as dataset

quality, size, and hyperparameter selection. Therefore, it is advisable to assess different algorithms

and hyperparameters across diverse datasets [14].

Kumar and Singh proposed two hybrid approaches that integrate Particle Swarm Optimization (PSO)

with SVM, as well as Genetic Algorithm (GA) with SVM, for IDS on the NSL-KDD dataset. Both

approaches demonstrated superior performance compared to standalone SVM and other existing

methods [15].

In conclusion, leveraging meta-heuristic algorithms alongside machine learning techniques has the

potential to enhance IDS performance across various datasets. Future research could explore the

effectiveness of different meta-heuristic algorithms and their combinations with machine learning

approaches in further detail.

2.4 Research gap and solution

Current machine learning-based IDS systems face several challenges including interpretability

issues, limited ability to detect new or unknown attacks, resource-intensive operations, sensitivity to

data quality and quantity, susceptibility to adversarial attacks, and difficulties in feature selection.

Overcoming these challenges will require ongoing research and development aimed at creating more

interpretable, robust, and resource-efficient machine learning models. Enhancements should focus on

improving the systems' capacity to handle emerging threats, reducing vulnerability to adversarial

manipulations, and refining feature selection processes. Furthermore, improving the quality and

quantity of training data is essential for advancing the effectiveness of machine learning-based IDS.

3. Methodology

The study utilizes the NSL-KDD dataset and introduces a methodology comprising three key steps:

pre-processing, feature extraction, and classification. Pre-processing is essential as it involves

formatting initial data and normalizing values to optimize the performance of machine learning

models. Feature extraction plays a critical role in eliminating irrelevant features that could otherwise

diminish model accuracy and prolong training duration. The training phase involves fine-tuning

parameters to improve model accuracy, thereby enhancing overall performance. The proposed model

structure is illustrated in the figure below.

Figure.2. Developing a Meta-Heuristic based ML model: A step-by-step process

The proposed approach involves leveraging Meta-Heuristic Algorithms to optimize the

hyperparameters of machine learning models for Intrusion Detection Systems (IDS). Meta-Heuristic

Algorithms, inspired by natural phenomena, are capable of searching for optimal hyperparameters

critical for enhancing model performance. Integrating Meta-Heuristic Algorithms with machine

176 Vol.19, No.02(IV), July-December : 2024

learning models aims to improve accuracy, minimize false positives and negatives, and enhance

anomaly detection capabilities. This approach offers efficiencies in exploring large hyperparameter

spaces effectively, reducing manual effort. Overall, the proposed methodology holds promise for

significantly enhancing IDS accuracy while mitigating false alarms.

3.1 NSL-KDD database description

The NSL-KDD dataset is a widely utilized benchmark in intrusion detection systems, derived from

the KDD99 dataset. It addresses shortcomings of the KDD99 dataset, such as redundancy and

duplicate records that could skew classifier outcomes. This freely available dataset is provided by the

Canadian Institute of Cybersecurity and includes both KDDTrain+ and KDDTest+ sets. Notably,

KDDTest+ incorporates seventeen additional attack types absent in KDDTrain+, necessitating the

exclusion of instances associated with these categories for fair classification. For further details

regarding the features of KDDTrain+ and KDDTest+ sets, refer to Table 1.

Table.1. Feature details of NSL-KDD dataset

3.2Data Preprocessing

The min-max normalization method employed in the NSL-KDD dataset involves adjusting each

numerical feature x by subtracting its minimum value and then dividing by the range (difference

between maximum and minimum values) of that feature. This process scales each feature to a range

between 0 and 1, ensuring uniformity across the dataset. The formula for calculating the normalized

value x_scaled is:

x_scaled = (x - min(x)) / (max(x) - min(x)).

It's crucial to apply this formula separately to each numerical feature in the dataset, utilizing the

minimum and maximum values specific to each feature from the training dataset. This practice

prevents the normalization process from being influenced by any information in the test dataset,

thereby avoiding potential bias in the results [16].

3.3 One-hot-encoding

To perform one-hot encoding on a categorical feature with n unique values in the NSL-KDD dataset,

we create n new binary columns, one for each unique value. The value of each binary column is 1 if

the original feature value matches the corresponding unique value, and 0 otherwise.

For example, if we have a categorical feature "protocol_type" with three unique values: TCP, UDP,

and ICMP, we would create three new binary columns: "protocol_type_TCP",

"protocol_type_UDP", and "protocol_type_ICMP". To one-hot encode "protocol_type", we use the

following mathematical equation:

• protocol_type_TCP = 1 if protocol_type = "TCP", 0 otherwise

• protocol_type_UDP = 1 if protocol_type = "UDP", 0 otherwise

• protocol_type_ICMP = 1 if protocol_type = "ICMP", 0 otherwise

Note that one-hot encoding can increase the dimensionality of the dataset and potentially slow down

machine learning algorithms. Therefore, it's important to consider which categorical features to one-

hot encode and which ones to leave as is [17].

3.4 Feature extraction

The processing module utilized in this approach extracts the most highly correlated features from the

dataset. To accomplish this, the percentage of zeros is evaluated for each continuous feature in both

the KDDTrain+ and KDDTest+ sets. The distribution of null values for each numeric variable in the

KDDTrain+ set is depicted in Figure 2.

177 Vol.19, No.02(IV), July-December : 2024

Figure.3. Graph of null values included in the 38 numeric variables of the KDDTrain+ set

In the study, feature vectors containing more than 80% zeros were omitted. Specifically, 20 variables

were identified and excluded (highlighted in red in Figure 3). The remaining dataset included 18

continuous features, supplemented by 84 one-hot-encoded vectors, resulting in a final feature vector

dimensionality of 102. This enhanced feature vector served as the input for the machine learning

methods employed in the research.

3.5 Classification

Supervised machine learning algorithms have been widely utilized to evaluate the effectiveness of

intrusion detection on the NSL-KDD dataset. The dataset comprises multiple features that signify

network traffic and attacks. The objective is to classify the traffic into either normal or malicious

categories. Several supervised ML algorithms such as RF, SVM, CART, and MLP have been applied

to the NSL-KDD dataset.

i. CART:

The CART algorithm is utilized in building decision trees for classification tasks, including in IDS

for categorizing network traffic as benign or malicious. The process involves several steps:

1. Begin with a labeled dataset of network traffic samples.

2. Calculate information gain or Gini impurity for each feature.

3. Select the feature with the highest gain or lowest impurity.

4. Split the dataset into two subsets based on the selected feature.

5. Recursively apply steps 2-4 to each subset until a stopping criterion is met.

6. Assign class labels to each leaf node based on the majority class in that node's subset.

7. The resulting decision tree can classify new network traffic samples by evaluating their

features.

The CART algorithm generates a decision tree structure that can be represented as a series of if-then

rules or binary splits on input features. The effectiveness of the model hinges on factors such as data

quality and hyperparameter settings, such as maximum tree depth and minimum samples required to

split a node [18].

ii. RF:

To implement the Random Forest (RF) method for IDS classification using the NSL-KDD dataset,

the following steps are typically followed:

1. Randomly select a subset of samples and input features from the dataset.

2. Build a decision tree using the selected subset.

3. Repeat steps 1-2 to construct a forest of decision trees.

4. To classify a new network traffic sample, apply each tree in the forest to the sample and tally

the number of trees that classify it as malicious or benign.

5. Assign the class label based on the majority vote (common vote) of the trees in the forest.

178 Vol.19, No.02(IV), July-December : 2024

The RF algorithm produces a collection of decision trees that collectively classify new network

traffic samples based on their features. The performance of the model is influenced by factors such

as the number of trees in the forest, the quality of the data, and hyperparameters including maximum

tree depth and feature subset size [19].

iii. SVM:

To construct an SVM system for IDS classification using the NSL-KDD dataset, the following steps

are typically followed:

1. Preprocess the data by standardizing the features to have zero mean and unit variance.

2. Select an appropriate kernel function to map the data into a higher-dimensional feature space,

if necessary.

3. Solve the optimization problem to find the hyperplane that maximizes the margin between

support vectors of each class.

4. Classify new network traffic samples by mapping them into the same feature space as the

training data and determining their position relative to the learned hyperplane.

The output of the SVM algorithm is a decision boundary that effectively separates different classes

of network traffic samples. The performance of the SVM model is influenced by the selection of the

kernel function and key hyperparameters such as the regularization parameter and kernel bandwidth

[20].

iv. MLP:

To construct an MLP model for IDS classification using the NSL-KDD dataset, follow these steps:

1. Preprocess the input data by standardizing it to have zero mean and unit variance.

2. Define the structure of the MLP network, specifying the number of layers, neurons in each

layer, and activation functions for each neuron.

3. Train the network using an optimization algorithm such as stochastic gradient descent to

minimize the error between predicted and actual class labels.

4. Evaluate the performance of the trained network on a separate validation set to assess its

accuracy.

5. Fine-tune hyperparameters, including the learning rate and regularization strength, to enhance

the model's performance on the validation set.

The output of the MLP algorithm is a model capable of classifying new network traffic samples as

either malicious or benign based on their features. The effectiveness of the MLP model relies on the

chosen architecture, optimal hyperparameters, and the size and quality of the input data [21].

3.6 Hyper-Parameter Tuning (HT)

Machine learning parameters are settings learned during training that significantly influence model

performance. These parameters encompass a wide range of values and configurations tailored to

specific problems. Examples include learning rate, regularization parameters, number of hidden

layers, activation functions, number of trees (in ensemble methods), kernel functions (for SVMs),

and number of clusters (in clustering algorithms).

The selection of these parameters is crucial and typically determined through iterative testing or

automated techniques such as grid search or Bayesian optimization. Each machine learning

technique has its own distinct set of parameters that play a critical role in optimizing model

performance for various tasks and datasets.

Table.2. Parameters for Applied ML techniques

Algorithms Parameters

CART

[18]

The maximum depth of the tree, the minimum number of samples needed to

split a node, and the criterion used for splitting nodes

RF

[19]

Number of trees, max tree depth, min samples to split a node, split criterion,

and number of features for best split.

SVM

[20]

Choice of kernel function, Kernel bandwidth

MLP

[21]

Number of neurons per hidden layer, activation function for each neuron, and

learning rate

179 Vol.19, No.02(IV), July-December : 2024

HT is the process of finding the best hyperparameters for a ML algorithms. These are set by the

practitioner and include values such as learning rate, regularization parameter, number of hidden

layers, and activation function. Different methods can be used for hyperparameter tuning [22]:

• Grid Search (GS): This involves specifying a grid of possible hyperparameter values and

testing every combination of hyperparameters to find the best set of values.

• Gradient-Based Optimization (GBO): This algorithm involves using gradient descent to

optimize the hyperparameters. This method can be computationally expensive since it requires

calculating gradients with respect to the hyperparameters, but it can be useful for small search spaces

and differentiable objective functions [23].

• Simulated Annealing (SA): This algorithm is inspired by metallurgy's annealing process,

which gradually cools a material to minimize defects. In the context of hyperparameter tuning, SA

randomly selects a new set of hyperparameters and accepts the new solution with some probability

based on a temperature parameter, which is gradually decreased over time to converge towards the

optimal solution [24].

• Genetic Algorithms (GA): This method uses a population of hyperparameters and evolves

the population using evolutionary principles, such as mutation and selection, to find the best set of

hyperparameters.

Hyperparameter tuning should always be performed on a separate validation set to avoid overfitting

to the training data.

i. Proposed algorithm steps

Utilizing a metaheuristic algorithm for hyperparameter tuning in machine learning follows these

steps:

• Step1: Define the search space: Let S be the search space, where each element s represents a

candidate solution consisting of a set of hyperparameters to be optimized.

• Step2: Initialize the population: Let P be the population of candidate solutions, where each

element p_i represents a solution in the search space. The population is initialized by randomly

generating or selecting initial solutions from the search space.

• Step3: Evaluate the fitness: Let f(p_i) be the fitness function that evaluates the performance

of each candidate solution p_i using a metric such as accuracy, AUC, or F1 score.

• Step4: Update the population: Apply the metaheuristic algorithm to generate new candidate

solutions based on the current population and fitness values. Let P' be the new population, where

each element p'_i is generated by applying variation operators such as mutation and crossover to the

current population P.

• Step5: Evaluate the fitness of the new solutions: Evaluate the fitness of the new candidate

solutions using the fitness function f(p'_i), and compare them to the previous best solutions to

determine if there has been an improvement in performance.

• Step6: Repeat steps 4-5: Iterate the algorithm until some stopping criterion is met, such as a

maximum number of iterations or convergence of the fitness values.

• Step7: Select the best hyperparameters: Once the algorithm has completed, select the

hyperparameters that correspond to the best performing solution based on the fitness function.

These optimized hyperparameters are subsequently used to train the final machine learning model on

the entire training dataset and evaluated on a separate test dataset to estimate its generalization

performance.

6. Result and Discussion

The objective of this research is to optimize hyperparameters for Machine Learning (ML) algorithms

to achieve optimal performance in Network Intrusion Detection using the NSL-KDD dataset. The

study will be conducted on a custom-built computer running Windows 11, equipped with an Intel

Core i5 CPU, 8GB RAM, and a 256GB SSD. Python will serve as the primary programming

language, utilizing libraries such as Scikit-learn, Pandas, NumPy, Matplotlib, and Pickle, along with

the Keras framework for data analysis, modeling, experimentation, and performance evaluation. The

development and testing of models will be carried out using Jupyter Notebook.

Performance Metrics and Evaluation: The research employs ML methodologies to enhance the

accuracy of network data classification. The datasets were partitioned as shown in the table below.

180 Vol.19, No.02(IV), July-December : 2024

The NSL-KDD dataset, which includes a subset of selected records, facilitates efficient model

evaluation. This dataset encompasses various types of attacks, summarized in the table along with

their respective attack types [24]:

Table.3. Type of attacks

S.No Attack Type Attack

1 Denial of

Service (DoS)

back, land, teardrop, neptune, pod, smurf

2 Remote to Local

(R2L)

buffer_overflow, ftp_write, guess_passwd, imap, loadmodule, multihop,

perl, phf, rootkit, spy, warezclient, warezmaster

3 Probe ipsweep, nmap, portsweep, satan

4 User to Root

(U2R)

buffer_overflow, httptuneel, rootkit,loadmodule, perl, xterm, ps,

SQLattack

The proposed architecture was trained and tested using a dataset comprising 125,972 items in the

training set and 22,544 items in the test set. This dataset is composed of 41 features categorized into

four groups. The initial three features include protocol type, service, and flag [25].

Table.4. testing and training .of data sets

S.No NSL-KDD

Dataset

Total data Normal DoS R2L U2R Probe

01 Training set 125,937 67,343 45,927 995 52 11,656

02 Testing set 22,544 9711 7458 2754 200 2421

The proposed architecture was tested on a dataset, and metrics were utilized to evaluate its

performance. The table below displays the mathematical expressions for the applied metrics.

Table.5. Mathematical Equations for the Computation of Performance Measures

S.No Metrics Expression

01 Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

02 Recall TP

TP+FN
 x100

03 Precision 𝑇𝑁

𝑇𝑃 + 𝐹𝑃

04 F1-Score
2.

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

TP is True Positive Values, TN is True Negative Values, FP is False Positive and FN is False

Negative values [26].

Results and Findings: Here, the improvement of the proposed design as well as the impact of

various existing models will be discussed. The effectiveness of various ML architectures is compared

in the tables that follow.

Table.5. Performance analysis of ML algorithms

ML Algorithms Accuracy Precision

Recall

 F1-Score

CART 85 87 81 84

RF 90 91 87 89

SVM 91 92 87 90

MLP 93 93 91 92

The table compares the performance of four machine learning algorithms: CART, RF, SVM, and

MLP. CART has the lowest scores with 85% accuracy and an F1-Score of 84%. RF performs better

with 90% accuracy and an 89% F1-Score. SVM slightly surpasses RF with 91% accuracy and a 90%

181 Vol.19, No.02(IV), July-December : 2024

F1-Score. MLP leads with the highest performance, achieving 93% accuracy, 93% precision, 91%

recall, and a 92% F1-Score, making it the best among the algorithms evaluated.

Figure.4. Performance Comparison of ML Algorithms

 Table.6. Performance analysis of Optimized ML algorithms of Accuracy

 GS GBO SA GA

Accuracy (%)

CART 86 86 87 89

RF 91 92 92 93

SVM 92 92 93 94

MLP 93 93 94 96

The table compares accuracy (%) of CART (86-89%), RF (91-93%), SVM (92-94%), and MLP (93-

96%) using GS, GBO, SA, and GA. Results highlight MLP's highest accuracy with GA (96%), while

RF consistently performs well across methods, and CART and SVM show incremental

improvements with advanced optimization techniques.

 Table.7. Performance analysis of Optimized ML algorithms of Precision

 GS GBO SA GA

Precision (%)

CART 88 88 89 91

RF 93 94 94 95

SVM 94 94 95 96

MLP 95 95 96 97

182 Vol.19, No.02(IV), July-December : 2024

Table 7 compares precision (%) of CART (88-91%), RF (93-95%), SVM (94-96%), and MLP (95-

97%) using GS, GBO, SA, and GA. Results demonstrate MLP's highest precision with GA (97%),

while RF and SVM also show strong performance across methods, and CART exhibits incremental

improvements with advanced optimization techniques.

Table.8. Performance analysis of Optimized ML algorithms of Recall

 GS GBO SA GA

Recall (%)

CART 82 82 83 85

RF 87 88 88 89

SVM 88 88 89 90

MLP 89 89 90 92

Table 8 compares recall (%) of CART (82-85%), RF (87-89%), SVM (88-90%), and MLP (89-92%)

using GS, GBO, SA, and GA. MLP consistently achieves the highest recall, with GA providing the

highest scores across all algorithms, indicating effective optimization for enhancing recall

performance.

Table.9. Performance analysis of Optimized ML algorithms of F1-Score

 GS GBO SA GA

F1-Score (%)

CART 85 86 87 89

RF 90 92 92 93

SVM 91 92 93 94

MLP 92 93 94 96

183 Vol.19, No.02(IV), July-December : 2024

Table 9 compares F1-score (%) of CART (85-89%), RF (90-93%), SVM (91-94%), and MLP (92-

96%) using GS, GBO, SA, and GA. MLP consistently achieves the highest F1-scores, with GA

yielding the highest scores across all algorithms, demonstrating effective optimization for enhancing

classification performance.

7. Conclusion

In today's digital landscape, intrusion detection systems (IDS) are vital for protecting computer

networks against a variety of cyber-attacks. This study focused on evaluating IDS performance using

meta-heuristic and ML algorithms with the NSL-KDD dataset. The results highlighted that

combining these algorithms yielded superior outcomes in accuracy, precision, recall, and F1-score

compared to using them individually. Specifically, the MLP classifier optimized with Genetic

Algorithm (GA) achieved the highest accuracy of 96%.

Future research can enhance intrusion detection systems by developing datasets that accurately

reflect current cyber-attack trends. Additionally, exploring the integration of ML and DL algorithms

could further improve IDS effectiveness. Evaluating the proposed

algorithm's performance across different datasets will be essential to validate its robustness and

applicability in diverse network security scenarios.

References:

1. M. Alizadeh, S. E. Mousavi, M. T. H. Beheshti and A. Ostadi, "Combination of Feature

Selection and Hybrid Classifier as to Network Intrusion Detection System Adopting FA, GWO, and

BAT Optimizers," IEEE, 7th International Conference on Signal Processing and Intelligent Systems

(ICSPIS), Tehran, Iran, Islamic Republic of, 2021, pp. 1-7.

2. https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/

3. Vanin, P.; Newe, T.; Dhirani, L.L.; O’Connell, E.; O’Shea, D.; Lee, B.; Rao, M. A Study of

Network Intrusion Detection Systems Using Artificial Intelligence/Machine Learning. Appl. Sci.

2022, 12, 11752.

4. Khraisat, A., Gondal, I., Vamplew, P. et al. Survey of intrusion detection systems:

techniques, datasets and challenges. Springer, Cybersecur 2, 20 (2019).

5. ElDahshan, K.A.; AlHabshy, A.A.; Hameed, B.I. Meta-Heuristic Optimization Algorithm-

Based Hierarchical Intrusion Detection System. Computers 2022, 11, 170.

6. Yang, C., Wang, X., & Zhao, S. (2021). Hybrid feature selection and normalization for

intrusion detection system. IEEE Access, 9, 36401-36409.

7. Garg, S., Kumar, V., & Kumar, V. (2020). Comparative analysis of normalization techniques

for network intrusion detection. International Journal of Electrical and Computer Engineering, 10(6),

6106-6115.

8. Hu, X., Wang, Z., Chen, Y., & Zhang, J. (2021). Deep learning-based intrusion detection for

network security using NSL-KDD dataset. PeerJ Computer Science, 7, e503.

9. Alazab, M., & Venkatraman, S. (2021). An Ensemble Model for Intrusion Detection System

Using Machine Learning Techniques. In Proceedings of the International Conference on Machine

Learning and Data Engineering (pp. 9-19). Springer.

184 Vol.19, No.02(IV), July-December : 2024

10. Chen, Y., Zheng, Y., Liu, Z., & Yang, Y. (2021). Neural Tree Network based Deep Learning

Model for Intrusion Detection. IEEE Access, 9, 44402-44411.

11. Huang, T., Chen, L., & Zhang, H. (2021). A Hybrid Deep Learning and Machine Learning

Method for Network Intrusion Detection. IEEE Access, 9, 30247-30256.

12. Ahmad, W., Bilal, M., & Han, K. (2020). Deep learning for network intrusion detection: a

review. Neurocomputing, 417, 321-345.

13. Zeng, Z., Zhang, Y., Li, L., & Huang, Z. (2020). Feature Selection Based on Mutual

Information and Grey Wolf Optimizer for Intrusion Detection. IEEE Access, 8, 115586-115594.

14. Aber, M., Ali, M., & Atta, A. (2020). Hybridization of SVM and Firefly algorithm for enhancing

the performance of intrusion detection system. Journal of Ambient Intelligence and Humanized

Computing, 11(10), 4147-4159.

15. Shalaginov, A., Osin, A., & Sukhov, A. (2018). Hybrid Intrusion Detection System based on

Artificial Bee Colony algorithm and SVM. Journal of Information Security and Applications, 42, 67-

79.

16. Zaki, A., El-Bahnasawy, A., & El-Kassas, S. (2018). A comparative study of machine

learning algorithms for intrusion detection system. International Journal of Advanced Computer

Science and Applications, 9(3), 119-124.

17. Ghosh, S., & Das, S. (2019). Hybrid Approach of Random Forest and AdaBoost Algorithm

for Intrusion Detection System. International Journal of Advanced Computer Science and

Applications, 10(2), 126-132.

18. Kumar, S., & Singh, K. (2019). Hybrid PSO-SVM Based Intrusion Detection System Using

NSL-KDD Dataset. International Journal of Advanced Research in Computer Science, 10(4), 279-

284.

19. Kumar, S., & Singh, K. (2018). A hybrid approach of support vector machine and genetic

algorithm for intrusion detection system. International Journal of Computer Science and Information

Security, 16(6), 9-15.

20. R. -F. Hong, S. -C. Horng and S. -S. Lin, "Machine Learning in Cyber Security Analytics

using NSL-KDD Dataset," 2021 International Conference on Technologies and Applications of

Artificial Intelligence (TAAI), Taichung, Taiwan, 2021, pp. 260-265.

21. M. Srikanth Yadav. and R. Kalpana., "Data Preprocessing for Intrusion Detection System Using

Encoding and Normalization Approaches," IEEE, 11th International Conference on Advanced

Computing (ICoAC), Chennai, India, 2019, pp. 265-269.

22. M. Choubisa, R. Doshi, N. Khatri and K. Kant Hiran, "A Simple and Robust Approach of

Random Forest for Intrusion Detection System in Cyber Security," 2022 International Conference on

IoT and Blockchain Technology (ICIBT), Ranchi, India, 2022, pp. 1-5.

23. M. Khodaskar, D. Medhane, R. Ingle, A. Buchade and A. Khodaskar, "Feature-based

Intrusion Detection System with Support Vector Machine," 2022 IEEE International Conference on

Blockchain and Distributed Systems Security (ICBDS), Pune, India, 2022, pp. 1-7.

24. M. S. Pervez and D. M. Farid, "Feature selection and intrusion classification in NSL-KDD

cup 99 dataset employing SVMs," The 8th International Conference on Software, Knowledge,

Information Management and Applications (SKIMA 2014), Dhaka, Bangladesh, 2014, pp. 1-6.

25. A. S. Ahanger, S. M. Khan and F. Masoodi, "An Effective Intrusion Detection System using

Supervised Machine Learning Techniques," 2021 5th International Conference on Computing

Methodologies and Communication (ICCMC), Erode, India, 2021, pp. 1639-1644.

26. Kaveh M, Mesgari MS. Application of Meta-Heuristic Algorithms for Training Neural

Networks and Deep Learning Architectures: A Comprehensive Review. Neural Process Lett. 2022

Oct 31:1-104.

